Monday, May 22, 2017

Fifteen countries in the Near East and North Africa region advance on the implementation of the Global Information System on PGRFA

More than 25 experts on documentation and information exchange from fifteen countries of the Near East and North Africa Region met in Cairo from 9 to 11 May to participate in a regional capacity strengthening workshop for the implementation of the Global Information System on plant genetic resources for food and agriculture.

The workshop was organised by the Secretariat of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) in collaboration with the National Genebank (NGE) and the Agricultural Genetic Engineering Research Institute (AGERI) of Egypt and with the support of the FAO Regional Office for the Near East and North Africa.

The event was possible thanks to the financial support of the Government of Germany through a project that promotes the adoption of Digital Object Identifiers. The workshop also benefited from recent coordination efforts and activities in the region developed by the Association of Agricultural Research Institutions in the Near East and North Africa (AARINENA).

“The workshop promoted the use of common standards and tools to facilitate the registration and identification of PGRFA material in the Global Information System”, said Dr Kent Nnadozie, Secretary a.i of the International Treaty.

The event gathered genebank curators, plant breeders, geneticists, in situ/Crop Wild Relatives experts, bioinformaticians and information specialists of the Region, nominated by the national focal points.

“At the national Genebank of Egypt we conserve 24,000 crop and forages accessions, we are using the Standard Material Transfer Agreement (SMTA) for their distribution. We stand ready to report on them and to share other valuable information on the collection”, said Dr Hanaiya El Itriby, national focal point of the Treaty in Egypt.

“We have recently adopted GRIN-Global as the documentation system and we are interested to directly connect to the Global Information System to make our information more visible”, said Dr M’Barek Ben Naceur, Director of the National Genebank of Tunisia. He added that the institution is strategically positioned to collaborate with other countries in the Region.

The needs of the Region
The experts also participated in a regional evaluation of the status of documentation systems. The participants provided information on ten different documentation systems which main strengths and weaknesses were analysed. The exercise took into account the notification of material available in the Multilateral System and the use of the Standard Material Transfer Agreement of the International Treaty.

Several countries indicated that their documentation systems are obsolete and that they need some kind of support to upgrade and connect them to the work of plant breeders and farmers. The main results of the evaluation will be made available soon by the Secretariat of the International Treaty.

Additionally, the participants became more familiar with the tools developed by the Capfitogen training programme of the International Treaty, the monitoring of the Global Plan of Action on conservation and sustainable use of PGRFA, the GRIN-Global genebank documentation system and the Genesys database. The Eurisco portal was also presented as an example of a coordinated product generated from regional cooperation.

The experts also elaborated a short list of recommendations for further strengthening regional coordination and networking through the Programme of Work on the Global Information System on topics of mutual interest, tools, standards and on individual and institutional capacity. Among the recommendations, they listed the revamping of existing networks on plant genetic resources in collaboration with the Association of Agriculture Research Institutions in the Near East.

Saturday, September 12, 2015

Agricultural biodiversity: Banks for bean counters

IN THE early 1970s Asia’s rice farmers faced ruin. The brown planthopper, an insect up till then found mostly in Japan, began to appear across the region. It fed on young plants and transmitted grassy stunt virus, causing crops to shrivel and brown. As it swept through Asia’s paddy fields, yields crashed. By the end of the decade it had caused damage costing over $300m—more than $1 billion in today’s money.

Scientists raced to find a solution. They screened over 6,000 samples of rice and its wild relatives until they found a unique sample from central India of a wild species called Oryza nivara that was resistant to the virus. By crossing it with domesticated rice strains, plant-breeders transferred the resistant genes into a new variety. Today, millions of farmers across Asia grow rice derived from such crosses.

“Crop wild relatives”—the wild ancestors of cultivated plants—are a valuable weapon in the fight against hunger. Together with varieties used by traditional farmers, they contain a wealth of genetic diversity. Yet they are under-researched and under-collected. With their survival threatened by population growth and environmental damage, the race is on to find them before it is too late.

Climate change is expected to cause higher temperatures and more frequent droughts, changing the distribution of pests and diseases. Population growth will add to the pressure on productive land: the UN expects the number of people in the world to rise from 7.3 billion today to 9.7 billion by 2050. This, together with a switch to more meat-eating, will mean a big increase in the demand for food. The UN Food and Agriculture Organisation (FAO) says humanity will need 70% more food by then.

Dependence on a few staples worsens the consequences of any crop failure. Just 30 crops provide humans with 95% of the energy they get from food, and just five—rice, wheat, maize, millet and sorghum—provide 60%. A single variety of banana—Cavendish—accounts for 95% of exports. A fast-spreading pest or disease could see some widely eaten foodstuffs wiped out.

That makes it even more important to preserve the genetic diversity found in crop wild relatives and traditional varieties as an insurance policy. Alas, much of it has already disappeared. The FAO estimates that 75% of the world’s crop diversity was lost between 1900 and 2000. As farming intensified, commercial growers favoured a few varieties of each species—those that were most productive and easiest to store and ship.

According to Cary Fowler of the Global Crop Diversity Trust, an international organisation based in Germany, in the 1800s American farmers and gardeners grew 7,100 named varieties of apple. Today, at least 6,800 of them are no longer available, and a study in 2009 found that 11 accounted for more than 90% of those sold in America. Just one, “Red Delicious”, a variety with a thick skin that hides bruises, accounts for 37%.

Meanwhile urbanisation, pollution, changing land use and invasive species are threatening the crop wild relatives that survive. A study in 2008 concluded that 16-22% of those related to peanuts, potatoes and cowpeas (a legume grown in semi-arid tropics) will have vanished by 2055 as a result of climate change.

Seed banks are the best hope of preserving those that remain. Dehydrating and freezing seeds means that they can be kept for hundreds, perhaps even thousands, of years, and still sprout when given light and water (as botanists need to do on occasion). Some 7.4m samples are already in seed banks around the world, but huge gaps exist.

Unbalanced diet
As part of a study to be published later this year, Colin Khoury and Nora Castañeda-Álvarez of the International Centre for Tropical Agriculture (CIAT), a research facility in Colombia, studied the state of conservation of more than a thousand crop wild relatives in seed banks. They found that for over 70% there were either too few samples for safety or none at all.

The Millennium Seed Bank (MSB) in Sussex, part of Britain’s Royal Botanic Gardens, is the world’s largest wild-plant seed bank, housing 76,000 samples from more than 36,000 species. It co-ordinates “Adapting Agriculture to Climate Change”, a $50m, ten-year international programme funded by Norway to collect and store wild relatives of 29 important crops, cross them with their domesticated kin and share the results with breeders and farmers. Its freezers are solar-powered and its vault is built to withstand a direct hit by a plane (Gatwick airport is close by). Other seed banks are more vulnerable. Staff at the International Centre for Agricultural Research in the Dry Areas, an institute once based in Syria, now found in Lebanon, shipped 150,000 samples to save them from being damaged in the former country’s civil war; seed banks in Afghanistan and Iraq have been destroyed. The Philippines lost one to fire.

Located in Cali, Colombia’s third-largest city, CIAT is home to more than 300 scientists. It has a mandate from the UN to protect, research and distribute beans and cassava, staple foodstuffs for 900m people around the world. Its seed bank, housed in a former abattoir, contains over 36,000 samples of beans, more than any other seed bank, and varieties developed there feed 30m people in Africa.

For many years CIAT’s researchers concentrated on creating varieties that could cope with poor soils and drought. But they have now turned their attention to heat resistance. Earlier this year they announced that they had found heat resistance in the tepary bean, a hardy cousin of the common bean cultivated since pre-Columbian times in northern Mexico and America’s south-west. Crosses with commonly cultivated beans such as pinto, black and kidney beans show potential to withstand temperatures up to 5°C higher than those common varieties can cope with. Even a lesser increase in heat resistance, of 3°C, would mean beans could continue to be cultivated in almost all parts of central and eastern Africa, says Steve Beebe of CIAT’s bean-breeding programme.

Big agricultural firms are also creating improved crops with the aid of genetic modification. MON863, for example, a maize variety engineered by Monsanto, contains an artificially inserted protein which targets the larvae of the rootworm, a pest which causes around $1 billion of damage each year in America alone. But developing such varieties has been expensive and slow in the past—and the fear of “Frankenstein food” can put consumers off. New varieties produced by crossing crop wild relatives are cheaper and less controversial.

In recent years politicians have stepped up efforts to conserve crop genetic diversity. The International Treaty on Plant Genetic Resources for Food and Agriculture, which came into effect in 2004 and has been signed by 135 countries and the European Union, identifies 35 food crops that are considered so important to global food security and sustainable agriculture that their genetic diversity should be widely shared. But it has worked less well than hoped. In 2013 a group of Norwegian researchers sent letters to 121 countries requesting seeds. Only 44 complied. Communication broke down with 23 and 54 did not even reply.

If a big crop were to fail, a single useful gene lurking in one wild relative could prevent calamity. PwC, an accountancy firm, values the genes derived from the wild relatives of the 29 crops regarded as most important by the MSB at $120 billion. Preserving the genetic diversity that remains would be an excellent investment.

Tuesday, September 8, 2015

محاصيل وأغذية معدلة وراثيا... نستهلكها رغم الشكوك التي تثار حولها


خاص بآفاق البيئة والتنمية: نأكلها ولا ندري انها معدلة وراثيا.. ولو علمنا قد نرفض تناولها، لكنا نفضل شراءها دون ان ندري ماهيتها.. هذا ليس لغزاً انما هي طريقتنا في التعامل مع النباتات والمنتجات الزراعية المعدلة وراثياً كما وصفها رياض الفارس، خبير الزراعة والبيطرة في رام الله.

يرمز للبذور المعدلة وراثيا بـ (GMO) وهي نباتات تم تعديل الحمض النووي فيها الـ DNA باستخدام تقنيات الهندسة الوراثية من خلال ادخال جين او اكثر من صنف إلى آخر قد لا يمت إليه بقرابة، وذلك بهدف تعديل أو إضافة صفة وراثية لم تكن لديه سابقاً. وتتضمن أمثلة على تلك الصفات: نباتٌ مقاوم لآفاتٍ بعينها، أمراضٌ محددة أو حتى ظروف بيئية، أو إنتاجُ عوامل دوائية أو مغذية معينة او انتاجية عالية.

وفي انباء حديثة تناولتها وكالات دولية تفيد بنية الحكومة الاسكتلندية حظر زراعة المحاصيل المعدلة وراثيا في أراضيها لحماية محاصيلها "النظيفة الصديقة للبيئة" لأنه ليس هناك ما يشير الى ان المستهلك الاسكتلندي يريد هذا النوع من المنتجات.

وتزرع المحاصيل المعدلة وراثيا على نطاق واسع في الأمريكتين وآسيا لكن الاراء انقسمت حولها في اوروبا، حيث تقول بعض الجماعات المدافعة عن البيئة انها قلقة من تأثيرها البيئي كما شككت فيما اذا كانت صحية للإنسان. اما المنتجون فيقولون أن الابحاث تثبت ان هذه المحاصيل آمنة حسب النبأ ذاته.

هل هي آمنة
"لا يوجد دليل على ان النباتات المعدلة وراثيا (Genetically modified plants) لها تأثير سلبي، لكن هذا لا يعني انها آمنة الاستخدام، فهناك احتمال لوجود تأثير طويل المدى، حيث انه يعزى لها ظهور سلالات بكتيرية مقاومة للمضادات الحيوية حسب عمر الدمج" المهندس الزراعي في جمعية المهندسين الزراعيين العرب.

وفي العموم، يخشى من أن تؤدي الجينات المعدّلة بعد استهلاكها إلى إفراز مواد سامة أو مواد تسبب حساسية لدى الانسان. مثلاً فإن استهلاك نبات يحتوي على جين مقاوم للبكتيريا يمكن أن يؤدي إلى انتقال هذا الجين إلى بكتيريا الجهاز الهضمي، ما ينتج عنه مقاومة هذه البكتيريا للمضادات الحيوية واستفحال قضية معالجتها كما اوضح الدمج.

"بالنسبة للآثار الجانبية لاستخدام النباتات المعدلة وراثيا فنحن لا نأكل أي شيء غير معدل وراثيا، نحن نستهلكها ونحن لا نعرف ذلك، يجب ان يتم وضع طابع على النباتات المعدلة وراثيا، على مستوى العالم هناك اصناف يتم رفض استلامها مثلا بحسب درجة التحسين فيها، نحن ليس لدينا رقابة على الحدود لفحص النباتات المعدلة وراثيا ومعرفة نسبة التعديل او التحسين الوراثي، ولا نعرف تفاصيل، فسوقنا مفتوح ويدخل كل المنتجات دون رقابة وهذه مشكلة حسبما افادت د. هبة الفارس، المتخصصة في الوراثة الكمية والتقنيات الحيوية في جامعة النجاح الوطنية".

فوائدها..
هناك من يرى أن من اهم الفوائد لها، انها تساهم في زيادة في الانتاج والحصول على نباتات مقاومة للآفات الخ، إلا ان الآثار السلبية التي قد تظهر لاحقا، ربما تؤدي الى نتائج عكسية على الصحة والبيئة.

د. عزيز البرغوثي، من المركز الوطني للبحوث الزراعية في وزارة الزراعة، يوضح من جهته ان معظم النباتات المنتجة والمحورة هي لمقاومة الافات او مقاومة المبيدات العشبية، و"ليس هناك الان على حسب معرفته نبات محوّر بهدف زيادة الانتاجية او تحسين القيمة الغذائية، بل بالعكس بعض المؤشرات تدل على انخفاض انتاجية النباتات المحوّرة."

ويتابع البرغوثي "زراعة نباتات محوّرة مقاومة لمبيدات الاعشاب او الافات قد يؤدي في النهاية الى ظهور العشب او الافة السوبر التي لا تستطيع تلك النباتات المحورة التغلب عليها، وبالتالي سيكون هناك حاجة للعودة الى استخدام مبيدات ذات تأثير اقوى مرة اخرى وذات اثر بيئي اكثر ضرراً."

ومن الآثار البيئية الايجابية لها حسب البرغوثي، امكانية زراعتها في مناطق يصعب زراعة المحاصيل الطبيعية فيها، وهو الأثر الأهم.

الحل لعدم خسارتها
هناك اهمية كبيرة للحفاظ على النباتات والبذور البلدية، تقول الفارس "لدينا ثروة من الاصناف البلدية، فإذا زرع المزارع الاصناف المعدلة والوراثية ولم يحتفظ بالبذور الاصلية ويزرعها سيتم فقدها، يجب ان أكون حكيما في استخدامي للنباتات المعدلة وراثيا، كما يجب ان احتفظ بالأصول الوراثية كما اوضحت الفارس.

وتتابع الفارس "على مستوى العالم هناك مؤسسة اسمها ايكاردا، هذه المؤسسة تقوم بتخزين الاصناف الفلسطينية وغيرها، على المستوى المحلي لا يوجد بنك جينات، من جديد هناك عمل على انتاج نواة لعمل بنك وراثي لتخزين الاصناف على مدة زمنية قصيرة او طويلة، ويتم عمل فحوصات دورية للحفاظ على حيويتها، بهذه الطريقة نحافظ على الأصول، بهذه الطريقة ازيد انتاجيتي وأحسن أصنافي، وبنفس الوقت يكون لدي قدرة على فحص الاصناف قبل توزيعها وطرحها في السوق، نسبة التعديل الوراثي وآثاره الجانبية وغيره من التفاصيل يجب ان أعرفها".

وتضيف الفارس "في وزارة الزراعة هناك مركز، في جامعة النجاح نعمل على اقامة آخر لمساعدة المزارعين والتوجه نحو الحفاظ على الامن الغذائي."

فلسطينيا .. اين نحن؟
في فلسطين موروث حيوي علينا الحفاظ عليه، دعوة وجهها الدمج لرؤيته ان النباتات المتوفرة في فلسطين متأصلة بها منذ قديم الزمن وتعتبر فلسطين من اكثر المناطق في العالم بها مخزون تنوع حيوي، والتوجه الى مثل هذه الزراعات (النباتات المعدلة وراثيا) قد تؤدي الى فقدان هذا الموروث بالإضافة الى البقاء تحت سيطرة ورحمة الشركات الضخمة الي تنتج مثل هذه النباتات وبالتالي نفقد التاريخ والحضارة والنباتات الأصيلة، مع العلم بأن النباتات البلدية احد مقومات البقاء والصمود.

وحسب معلومات زودنا بها د. البرغوثي فقد بلغت المساحة المزروعة بالنباتات المعدلة وراثيا لعام 2013 على مستوى العالم حوالي 174 مليون هكتار يقوم بزراعتها 18 مليون مزارع بزيادة 5 مليون هكتار عن 2012. نسب المساحات على مستوى العالم لعام 2013 المزروعة ببعض أنواع النباتات المعدلة وراثيا هي: فول الصويا 79%، الذرة 32%، القطن 70%، والخردل 24%.

هبة الفارس ترى من جهتها ان هناك حاجة ماسة لإنشاء مختبر متكامل لفحص النباتات قبل توزيعها على المزارعين او تقديمها، تقول "لدينا مصادر وراثية وهناك تنوع كبير، هناك اصناف فيها جينات عالية لها اهمية كبيرة يمكن الاستفادة منها واستخدامها لتحسين نباتات ليس فيها هذه الجينات، هناك اعشاب قريبة من بعضها يمكن الاستفادة منها بنقل الجينات لنباتات تتحمل الظروف القاسية والملوحة وغيره، وبالتالي نساعد المزارعين في التغلب على الظروف الجوية وإنتاج اصناف أفضل، وبالتالي نساهم في تأمين أمن غذائي أفضل."

Thursday, June 11, 2015

National Training Workshop on “Building National Capacities in National Plant Genetic Resources Knowledge Network” in Lebanon

National training workshop on “Building National Capacities in National Plant Genetic Resources Knowledge Network” organized in LARI and UL, Beirut, Lebanon on 11 - 12 June 2015 between FAO and Plant Genetic Research Institutions in Lebanon
Within the framework of Project "Optimizing the Use of Plant Genetic Resources for Food and Agriculture for Adaptation to Climate Change" (TCP/SNO/3401).

 The Training aims Strengthening Linkages, Collaboration and Knowledge Sharing for Development among Plant Genetic Resources Stakeholders at National and Regional Levels.

The workshop will be designated for stakeholders and potential users in Lebanon.

Monday, June 8, 2015

National Training Workshop on “Building National Capacities in National Plant Genetic Resources Knowledge Network” in Jordan

National training workshop on “Building National Capacities in National Plant Genetic Resources Knowledge Network” organized in NCARE, Amman,
Jordan on 8 - 9 June 2015 between FAO and Plant Genetic Research Institutions in Jordan Within the framework of Project "Optimizing the Use of Plant Genetic Resources for Food and Agriculture for Adaptation to Climate Change" (TCP/SNO/3401).

 The Training aims Strengthening Linkages, Collaboration and Knowledge Sharing for Development among Plant Genetic Resources Stakeholders at National and Regional Levels.

The workshop will be designated for stakeholders and potential users in Jordan.

Monday, February 16, 2015

National Training Workshop on “Building National Capacities in National Plant Genetic Resources Knowledge Network”

National training workshop on “Building National Capacities in National Plant Genetic Resources Knowledge Network” will be organized in Egypt on 15 - 16 February 2015. between FAO and Plant Genetic Research Institutions in Egypt Within the framework of Project of Optimizing the Use of Plant Genetic Resources for Food and Agriculture for Adaptation to Climate Change (TCP/SNO/3401).

 The Training aims Strengthening Linkages, Collaboration and Knowledge Sharing for Development among Plant Genetic Resources Stakeholders at National and Regional Levels.

The workshop will be designated for stakeholders and potential users in Egypt.

Wednesday, November 19, 2014

National Workshop on "Monitoring and reporting on the implementation of the second global plan of action (GPA2) for PGRFA" in Egypt


National Workshop on "Monitoring and reporting on the implementation of the second global plan of action (GPA2) for PGRFA" organized in Egypt on 5-6 November 2014. between FAO and Plant Genetic Research Institutions in four member countries (Egypt, Jordan, Lebanon and Iran) Within the framework of Project of Optimizing the Use of Plant Genetic Resources for Food and Agriculture for Adaptation to Climate Change (TCP/SNO/3401).

Objectives of the National workshop on Monitoring and reporting on the implementation of the second globalplan of action (GPA2) for PGRFA
  • Overview of the implementation of the Second Global Plan of Action for Plant Genetic Resources for Food and Agriculture
  • To introduce the World Information and Early Warning System (WIEWS) software.
  • Building stronger partnerships among national stakeholders on PGRFA management.
  • Increasing understanding about the status and dynamics of PGRFA.
  • Strengthening the coordination among different stakeholders involved in the conservation and use of PGRFA and in the collection of relevant information to be uploaded on the National Information Sharing Mechanism(NISMs)
  • Determination of the monitoring and reporting process on the implementation of GPA2 for PGRFA in Egypt.